If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-11x-22=0
a = 15; b = -11; c = -22;
Δ = b2-4ac
Δ = -112-4·15·(-22)
Δ = 1441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{1441}}{2*15}=\frac{11-\sqrt{1441}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{1441}}{2*15}=\frac{11+\sqrt{1441}}{30} $
| 9*(x-4)-5x=x-12 | | 7a-10=2-40 | | x=3.14*128 | | (x-9)^2/5=9 | | 3x-17=6x+4 | | 8x+66=46 | | 5/6+x=-5/9 | | 4x+2-5x=1-2x+9 | | 15x^2-7x-2=4x-20 | | 5a+45=-5 | | -96=-84+12s | | 3x^2=x-10 | | 3(3-8)=4(3x+6) | | -6x=5=17 | | X+x+1=35+x+2 | | -62/21=-11/2v+2-12/3 | | x-10+1/2x+5+2x-30=180 | | 5-5(x+9)+4x=6+1 | | 8(1+5x)=8x+40 | | 4y-2(y-5)-y=-6 | | 8m+18=18m-42 | | -2x+-10=120 | | 20-t=-5 | | 5(x+3)-(2x+15)=-15 | | 5(4x-1)+5=-40 | | 8^(3x-1)=32^x | | 2x+x-4x=12 | | 9(x-5)=2 | | x-1/8=-5 | | 7p+17p=96 | | 5x+1=7x−3 | | 5/1+c=5/4 |